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Error Estimates for the Approximation 
of a Class of Variational Inequalities 

By Richard S. Falk 

Abstract. In this paper, we prove a general approximation theorem useful in obtaining 

order of convergence estimates for the approximation of the solutions of a class of 

variational inequalities. The theorem is then applied to obtain an "optimal" rate of 

convergence for the approximation of a second-order elliptic problem with convex set 

K = {v E Ho(): v > X a.e. in n}. 

1. Introduction. In this paper. we consider a method for obtaining error estimates 
for the approximation of a class of variational inequalities. More specifically, we let V 
be a Hilbert space, V' its dual (with norms 11 lv and 11 *liv' respectively), and 

denote by (, ) the pairing between V and V'. Now, let a(u, v) be a continuous, 
coercive, symmetric, bilinear form on V, i.e., there exist constants a, Ca > 0, such 
that 

Ia(u, v)l < CallUlIVIIVIIV Vu, v E V 

and 

a(v, v) >a1vI2 Vv E V. 

Finally, let K be a closed convex subset of V and f an element of V'. We then 
consider the approximation of problems of the following type: 

Problem P. Find u E K such that 

a(u, v -u) >(f, v -u) Vv C K. 

It was shown by Lions and Stampacchia in [6] that, under slightly weaker condi- 
tions (symmetry is not needed), there exists a unique solution to Problem P. Further- 
more, (with symmetry) Problem P is equivalent to 

Problem P'. Find u E K such that 

J(u) = inf J(v) where J(v) = ?12a(v, v) - (f, v). 
veK 

As was done in [2] by Brezis and Sibony, we shall use this second formulation 
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964 RICHARD S. FALK 

of the problem to construct a finite-dimensional approximate problem which can be 
solved by mathematical programming. The original formulation will then be used to 

derive an error estimate for this approximation scheme. The remainder of the paper 
will then be devoted to showing how these results can be applied to obtain an approxi- 
mation scheme and an error estimate in a specific problem. 

2. Approximation Scheme and General Error Estimate. Let Vh be a finite-dimen- 

sional subspace of V with basis {wi}q 1 * We can then write an arbitrary element 
GE Vh as Iq I giwi. Now, construct a closed convex subset Kh of Vh such that 

the following two conditions are satisfied: 
(1) Kh should reduce to a finite number of constraints on the OP 
(2) Kh should be a "good" approximation to K. (This condition will be made 

clear by the example presented in the next section.) 
The approximate problem is simply 
Problem Ph. Find uh e Kh such that 

h~~~~~~~~U Eh 

.J(Uh) = nf J(Vh) 
UhE& Kh 

where J(vh) = ?a(vh, Vh) -(f, Vh). 
Note that, under condition (1), this problem becomes one of finding the minimum 

of a quadratic form in the Pi, subject to a finite number of constraints on the Is, a 

nonlinear programming problem. In the event the constraints are linear, we have a 

quadratic programming problem. Note that we do not require that Kh = K n Vh, or 
even that Kh be contained in K. 

We remark that Problem PV is equivalent to 
Problem Ph. Find uh E Kh such that 

a(uh, Vh -Uh) > ,v h -Uh) vh E Kh, 

and that by the theorem of Lions and Stampacchia, this approximate problem also 
possesses a unique solution. 

We now introduce a final piece of notation and then derive a general error estimate 

for the approximation scheme given above. Suppose that W is a Hilbert space dense 
in V' and the injection of W into V' continuous. Then there exists a continuous 
injection i of V into W' such that i(V) is dense in W' and 

(i(v),w)WW' =(v, W)VV' Vve V, Vwe W. 

We will henceforth identify V with a subspace of W', dense in W1 with a continuous 

injection map. Furthermore, we will let (, ) denote both the pairing between V 

and V', and W and W'. With this notation, we now derive the following general 
error estimate. 
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THEOREM 1. Let u and Uh be the solutions of Problems P and Ph, respectively. 
Denote by A E L(V, V') the map defined, for u e V, by a(u, v) = (Au, v) Vv e V. 

Finally, suppose that f - Au E W. Then, 

Ilu - uh llv < {- lu- h lV + - if AuIIw[Ilu - Vh llw + uh - ] 

Vv e K and Vvh E K. 

Proof By the definitions of u and uh, we have that 

a(u, u-v)6(f, u-v) VvE K, 

a(uh, uh -Vh) (f uh -vh) Vvh Kh. 

Adding these inequalities and transposing terms, we obtain 

a(u, u) + a(uh, uh) < (f, u - v) + , uh - vh) + a(u, v) + a(uh, vh). 

Subtracting a(u, u.) + a(uh, u) from both sides and grouping terms, we obtain 

a(u - uh, U - Uh) (f, U - Vh) + ( U - v) - a(u, Uh - v) - a(uh, u - vh) 

=(f u-v.) + (f uh -v)-a(u, u. -v)-a(u, u-vh) + a(u-Uh, U-Vh) 

= (f-Au, u - v.) + (f-Au, uh - v) + a(u - uh, u - vh) 

by the definition of A and the fact that K and Kh C V. Since by assumption 
f - Au E W, we have, using the continuity and coercivity of the bilinear form a(u, v), 
that 

allu uhhiV 6 llf -Aull lu -vhhiw ?+ lf-Aullwhluh -Vlw' 

+ Cahu -UhJlvhU Vh *V 

Since 

C2 
Ca "U u uh il v~ 11 uVh 11 6<2 11 uuh llv +-1 u- llf 

we have that 
c2 

2 lu-uh iV W i-AuiiWiiu-vhiiw' + iif Auiiwiiuh viiw 2? h V 

Vv E K and Vv, GE Kh 

The theorem follows immediately. 

3. An Application. We begin with some notation. Let Q? be a bounded convex 

domain in R2 with C2 boundary A2. Let m be a nonnegative integer and let 
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C'(T2) denote the set of infinitely differentiable functions on Q2. Then Hm(E2) will 

denote the completion of C'(n) in the norm 

IIimWQ = (iaEm IDc&IIIa)"< 

where 110110I = (& w2 dx)l /2. 
Now, let CO([2) be the set of infinitely differentiable functions with compact 

support on Q2 and denote the completion of CO (2) in the above norm by Ho (2). 
For m a negative integer, we define Hm(92) as the completion of C'(n) 

with respect to the norm 

II&Im4 =1 su~p 11, 
_ 

xec (n )X m, n 

where (k, X) = fn OX dx. 
For m a negative integer, we note that Hm(92) = [Htm((2)]', the dual space 

of H-m( ?). 
We now consider the special case when Problem P is defined in the following 

setting. Let V = H(2), V' = H- 1(2), and W = W' = L2(Q2). For u, v eH (Q) 
let 

a(u, v) = 2 fai1(x)uxivX. dx + fc(x)uvdx 

where 

E a ij ti tj > oet 
1 2 At EER2 

and some oz > 0. Suppose that ai1 = aji so that the bilinear form a(u, v) is sym- 

metric, and that ai, E Cl(Q) and c E L(72). Then, there exists a constant Ca > 0 

such that 

Ia(u, v)I < CalluuIIljQ IIvI, Vu,veH (Q2). 

Further, suppose that c(x) > X where X is either nonnegative or negative with a 

sufficiently small absolute value so that a(u, v) is coercive on H'(92), i.e., 

a(v, v) >all112l V vEE Ho (Q) 

and some constant oz > 0. 
Let A be the operator defined by Au = - 13j= (aijuxu), + cu. Then, for 

u, v E H(2), a(u, v) = (Au, v), and since aij = aji, A is a formally selfadjoint second- 

order elliptic operator mapping Ho(Q2) H- 1(Q). 
Finally, suppose that f E L2(Q2) and X is a given function in H2(g2) such 

that X < 0 on 32. In terms of the above notation, we will consider the approxima- 



VARIATIONAL INEQUALITIES 967 

tion of Problem P where 

K= {vEH(E2): v x a.e.in 9?}. 

In the process of developing an approximation scheme and error estimate for this 
problem, we will need to make use of a regularity result for the solution u. Brezis 
and Stampacchia have shown in [3] that under the conditions which we have imposed, 
the solution u of Problem P belongs to H2(E2). Furthermore, we have the estimate 

(4) IIAu " 2() < max {Ilflf 2 o)ru} 

where a is the solution of the equation 

a = Ilsup(AX, )11L2()+( f L2(Q))/(u flL2(n)). 

We remark that since IIu "2 n < CIIAu lL2(a) for some constant C, (4) also yields 
an estimate for Ilu "2 5 which depends only on the data of the problem. 

Since it will have a bearing on the optimality of our final error estimate, we also 
remark that Lewy and Stampacchia have given a simple counterexample in [5] to show 
that, in general, the solution u of Problem P will not belong to C2(g2), even under 
additional regularity assumptions on the data of the problem. 

The approximation scheme we use for this problem will be of the general type 
described in Section 2, i.e., we will replace Problem P by a minimization problem of 
type P'h which can be solved by mathematical programming techniques. To complete- 
ly define our approximation scheme for the case we are considering here, we need only 
give explicit choices for the finite-dimensional subspace Vh C Ho(Q2) and the approxi- 
mate convex set Kh C Vh. We first describe the construction of Vh. 

Let h, 0 < h < 1, be a parameter, and, for each value of h, let Zh be a poly- 
gon inscribed in E2 with all its vertices lying on 3? and each side of the polygon of 
length less than or equal to h. Now subdivide 9?h into triangles Tq, q = 1, 

Nh such that the following two conditions are satisfied: 

(5) The ratio of any two triangle sides in the triangulation is 
bounded by a constant b independent of h. 

(6) All the angles in the triangulation are greater or 
equal to some angle 0 independent of h. 

Using the terminology of Nitsche [9], we will henceforth refer to a triangulation satis- 
fying conditions (5) and (6) as 4- b regular. 

Now, define V, = {vh: Vh is linear in each triangle Tq, q = 1, , N, con- 

tinuous on Q?, and vh = 0 in f2 - E2,} Clearly, Vh is a finite-dimensional sub- 
space of H(Q2). Finally, define K, = {Uh e V,: Vh > X at every vertex of each 
triangle Tq, q = 1, , Nh }. Clearly, Kh is a closed convex subset of 1h and 
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satisfies condition (1) of Section 2. Since Kh reduces to a finite number of linear 
constraints, the approximate minimization problem P'h becomes a problem in quadratic 
programming. 

The remainder of this section will be devoted to proving the following error es- 
timate for the approximation scheme just presented. 

THEOREM 2. Let u and uh be the respective solutions of Problems P and Ph 
with K and Kh defined as above. Then there exists a constant C independent of 
u and depending on the data Q2, f, X, aii, and c such that 

(7) 11 - Uh 111 ,Q < Ch. 

To prove this theorem, we will need to make use of the following results which 
can be found in Nitsche [9]. 

LEMMA 1. Let W = W(rl, r2) (0 < r1 < r2 < 0o) be the class of convex domains 
92 C R2 with piecewise smooth boundary that satisfy 0 1 C -C 02 where 01, 02 
are two concentric circles of radii r1 and r2, respectively. Then, if Q2 and 92' E 

W with dist (32, 92') 6 6 and u E H(Q2) n H2(g2), we have 

(8) IIUI~~~k~>~~-~ ?C. >kIIuII2,- (8) 11 u Ilk, a - a n'C 
2 k 1U12 a 

for k = 0, 1 and C depending only on r1 and r2. 
LEMMA 2. Let T be a polygon and Th a 0 - b regular triangularization of 

T where h denotes the maximum of the sides of all the triangles making up Th. If 
uEH2(T), then 

(9) HU - SUi T1 < Q(0, b)h 2 kllUll2 

where Suh is the piecewise linear interpolant of u, i.e., Su = u at the vertices of 
the triangulation, and Su is linear in each triangle. 

The proof of Theorem 2 will follow from an application of the general error 
estimate given in Theorem 1. In the setting we are in, (3) becomes 

lu- uh 111 

(10) 2 {- h Ii'n ?+ I1f-AuII 2 )[IIu u-Vh L2() + h1uh - VIIL2 I] 

Vv E K, Vvh E Kh. 

To apply this result, we will need estimates for the quantities II u - vh 11 Q. 
Hu - VhiiL2(n), and Huh - V lL2(n, for some v E K and some vh E Kh. 

In the lemmas which follow, 6 will denote a generic constant, not necessarily 
the same in any two places. 

LEMMA 3. Let vh be the unique element in Vh such that U = Vh at all 
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vertices of each triangle Tq, q = 1, - *, N,,. Then Vh E Kh and 

(1 1) IIU-vh 11 2 < Ch IIU II2,Q2, 

(12) IIu - VhlQ < ChI1uII2 11, 

where C is a constant independent of h and u. 
Proof. By the regularity result for u and the Sobolev imbedding theorem, both 

u and X are continuous. Since u e K, u(x) > x(x) Vx E Q2. Hence, by the defini- 
tion of vh, we know that, if co is a vertex of one of the triangles Tq, Vh(c) = 

u(co) > X(co), which implies that vh E Kh. To obtain (11) and (12), we set for 
k = 0, 1 

Hu - V 112 Hu - Vh 112 + Ilu - 112 

and apply Lemmas 1 and 2. 
From Lemma 2, IIu - vhI < C(q, b)h2-kIIuII2 2n. Using Lemma 1 and the 

fact that vh = 0 on Q2 - QhI we have 

Iu - VhIIk Q_Q = 2 Q Ci lIuII2,Q where 6 = dist(32, 39h) 

and C is independent of u and 6. Furthermore, since a2 E C2 and the largest 
side of the inscribed polygon Qh is < h, 6 < C(32)h2 where C(Q2) is a constant 
depending only on 32. Hence, we have 

IIU - Vh 112 < [C( , b)h 2kIIuII 2,Q ]2 + [C(Q2)h2 kIIuII2,Q]2 

Since IIUII2 Q < IIUII2,,Q we have finally that IIu-VhIlk Q Ch2 kIIuII 2,Q. k = 

0, 1, for some constant C independent of h and u. 
We now turn our attention to deriving an estimate for IIUh - viI, v E K, where 

uh is the solution of the approximate problem P'. 
LEMMA 4. Let uh be the solution of Problem P' and let v = sup {u,1 X} 

Then v E K and 

(13) IIUh - VL L2 (n) < Ch2 for some constant C 
independent of uh and h. 

Proof Since uh E H'(2) and X e H2(Q2) with X < 0 on 32, clearly, 
ve K. 

Now 

11 Uh - V112 - 11 Uh - V112 ? + 11 Uh -V112 2(Q _Q 
- 

L (n h) h L (-h) 

= hUh - VII2 2 + lSUp(0, X) II2(n-n 

since uh = 0 in Q2 - 92h Now 
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uh -v = O when uh > X, 

= uh -X when uh < X. 

Let Sx be the unique element in 7h such that Sx interpolates X at the vertices 
of each triangle Tq, q = 1, , N(h). Since Uh E Kh, uh > x = Sx at these vertices. 
But since Sx and uh are piecewise linear, uh > SX Vx E2Q. Hence, on Eh 

when uhX<O. Ouh -V=h X=h Sh +S-x S-x Rich implies that, 
Vx GE h Iu - v < Ix - SxI and hence that lu,1 -uvl2 ? ll -X Sx112 
Thus we have 

HUh - v122 X I- ShI12 ?1 lSUP (0, X) 11 2 11ah VL 2 (Q) 11X h IL2 ( +h) L 2 (n 
_ 

n h) 

But by Lemma 2, 

ll-h 1L2(nh) C X12 ,h h XI2,n 

and by a slight modification of Lemma 1, one can show 

l SUP (O, X) 11L 2 (n - ) ACh2 IX11 2,n 

Hence 1IIuh - Vi ?L2(n) Ch2 11X1I2 a < Ch2 where C is independent of uh and h. 
We now note that Theorem 2 follows immediately from Lemmas 3 and 4 and the 

a priori estimates for u and Au stated previously. 

4. Conclusions. We remark that since the best approximation to elements in 
H2(Q2) by elements in Vh is of order h in the H' (Q2) norm, our estimate is op- 
timal in the sense that it duplicates up to a multiplicative constant the best approxima- 
tion properties of the subspace. We further note that by the counterexample of Lewy 
and Stampacchia, no higher-order accuracy can be achieved by using better subspaces, 
e.g., higher-order splines, since this would require additional regularity of the solution. 
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